Approximating Density Probability Distribution Functions Across Cosmologies

نویسندگان

چکیده

Using a suite of self-similar cosmological simulations, we measure the probability distribution functions (PDFs) real-space density, redshift-space and their geometric mean. We find that density PDF is well-described by function two parameters: $n_s$, spectral slope, $\sigma_L$, linear rms fluctuation. For mean real- densities, introduce third parameter, $s_L={\sqrt{\langle(dv^L_{\rm pec}/dr)^2\rangle}}/{H}$. PDFs for LCDM cosmology also well-parameterized these three parameters. As result, are able to use simulations approximate range cosmologies. make publicly available provide an analytical fitting formula them.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Probability Distribution Functions in Supersonic Hydrodynamic and Mhd Turbulence

We study the probability distribution function (PDF) of the mass density in simulations of supersonic turbulence with properties appropriate for molecular clouds. For this study we use Athena, a new higher-order Godunov code. We find there are surprisingly similar relationships between the mean of the time-averaged PDF and the turbulent Mach number for driven hydrodynamic and strong-field MHD t...

متن کامل

Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials

Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization and Monte Carlo methods for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated by an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy-Shafer architecture for computing marginals, with no rest...

متن کامل

Multi-level methods and approximating distribution functions

Biochemical reaction networks are often modelled using discrete-state, continuoustime Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s di...

متن کامل

Approximating Conditional Distribution Functions Using Dimension Reduction

Motivated by applications to prediction and forecasting, we suggest methods for approximating the conditional distribution function of a random variable Y given a dependent random d-vector X. The idea is to estimate not the distribution of Y |X, but that of Y |θX, where the unit vector θ is selected so that the approximation is optimal under a least-squares criterion. We show that θ may be esti...

متن کامل

Approximating distribution functions by iterated function systems

In this small note an iterated function system on the space of distribution functions is built. The inverse problem is introduced and studied by convex optimization problems. Applications of this method to approximation of distribution functions and estimation are presented. Résumé. Dans cette petite note un système de fonction itéré sur l’espace de fonctions de repartition est construit. Le pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Astrophysical Journal

سال: 2022

ISSN: ['2041-8213', '2041-8205']

DOI: https://doi.org/10.3847/1538-4357/ac5e9f